

EMU-CSC Commissioning

G. Apollinari – O. Prokofiev FNAL

CMS Annual Review CERN – Sep 14th, 2003

Outline

Introduction

- Maintenance and Operation (M&O) Phase Description
- Scope and Deliverables of M&O Phase
- High-Level Schedule

M&O Phase Planning

- Phases and their Description
- Manpower Resources
- Major Milestone
- Conclusions

M&O Phase - General Scope

- Commission CSCs, FEE & Peripheral Electronics
 - Define Project Completion
 - Full Installation up to and including connectivity tests
 - Operate CSCs, FEE & Crates as HEP Detector
 - Gas, Cooling Water (CSCs & Crates), HV, LV,
 - Read out EMU (DAQ System)
 - Control EMU (DCS System see Clare's talk)
- Slice Test
 - From "Cosmic μ" to "Mass Storage"
 - Track → Trigger Primitives → DAQ Chain → Physics Object
- Slice Test → Operation
 - i.e. from "Part of the Detector working some of the time" to "All Detector working all the time"

M&O Phase Management Structure

Maintenance & Operation:

- Direct line of management structure with main L3 tasks:
 - CSC Maintenance
 - FEE Integration & Maintenance
 - DAQ Interface and Slice Test
 - DCS Controls
 - Alignment, Calibration & Database
 - Operations
- US CMS, IHEP China and PNPI Russi will share responsibilities for the commissioning of the ME2, ME3 and ME1/2-ME1/3 system.
- Weak point: ME1/1 Commissioning not ye fully integrated in CSC-M&O phas although, obviously, no success can be can be achieved without ME1/1.
 - Homework for next few months.

M&O Phase Scope of Work

CMS EMU M&O Phase Guidelines, Responsibilities & Scope of Work

November 11th, 2002 Final Version

This CMS EMU Maintenance & Operation (M&O) Phase – Guidelines, sponsibilities & Scope of Work document covers the description of tasks and ponsibilities for the L2 and L3 management in the context of the M&O Plan eparation. L3 Managers will use this document to further finalize the M&O activities diresource loaded schedule.

The document is split in five subsections according L3 subdivision of the M&O pject. Each L3 subsection contains the following self-explanatory items:

- Expected Deliverables from Project Phase
- Overall Goals and Major Deliverables
- Major Milestones

The L3 Activities and Responsibilities section provides the major input to the L3 anagers for the development of the M&O Project file. Every Manager is expected to velop a roadmap to deliver the products and services listed in the respective *Overall als and Major Deliverables* subsections, as well as an expanded schedule for that admap following the guidelines provided by the *Major Milestones* subsection.

- The M&O Scope of work is described the document "CMS EMU M&O Photographics and Scope Work".
- The document lists:
 - Expected Deliverables from the Prophase
 - M&O Deliverables
 - Major Milestones
 - Concurred on by US-L2 Project Managas well as L1-L2 US-M&O Managers.

M&O Major Milestones vs. V33 Milestones

Task Name	Start	0.50	200		2004	2005	2006	2007	2008	2009	2010
☐ CMS EMU Milestones	Mon 9/30/02	Apr	100	. JApr	Oct Apr	Oct Apr	Oct Apr	Oct Apr	Oct Apr	Oct Apr	Oct Apr
ME23/2 CSC's to CERN for SX5 Installation	Mon 9/30/02	2	♦ Ş	ер 30	02						
Address Integration and Noise Issues (FEE)	Mon 3/3/03			+		1					
Commissioning of CSC on Disk	Mon 3/3/03		•	Н							
ME2 and ME3 stations Installed	Fri 4/30/04				◆ -1	pr 30 '04					
Services (Gas, HV, LV, Water) to CSC	Thu 5/1/03		L	-							
ME+1/2, ME+1/3 Ready to Install	Mon 8/2/04					Aug 2 '04					
EMU Trigger Production	Tue 9/30/03				Sep 30	03					
Slice Test Development Activities	Thu 5/1/03										
Slice Test Completion	Fri 10/1/04				اللا	Oct 1 '0	4				
End ME SX Installation on YE+	Wed 12/15/04					Dec 1	5 '04				
YE+ Operations" in SX5	Tue 3/1/05					Ma_Ma	1 '05				
ME-1/2, ME-1/3 Ready to Install	Mon 1/31/05					Jan	31 '05				
End ME SX Installation on YE-	Tue 8/30/05					1	Aug 30	05			
YE- "operations in SX5	Thu 9/1/05					1	Sep 1 '0	5			
YE lowered in UX5	Mon 5/2/05					-	4				
End UX Inst/Cabling on YE+	Tue 2/28/06						T →←Fel	28 '06			
End UX Inst/Cabling on YE-	Tue 5/30/06						5	May 30 '06			
Commissioning in UX5	Mon 10/3/05					4					
CMS Ready	Mon 4/30/07							□	pr 30 '07		
CMS - Pilot Run	Mon 4/30/07							4			
CMS - Physics Runs	Thu 8/30/07							I		I.	

- Project Milestone (V33)
- US M&O Milestone
- P5 Infrastructure Milestone

EMU - CSC Commissioning at a Glance

Phase I When Who

- **Detector Status**
- Connectivity & Dead Channels
- Oct.-Nov. ~Installation Crew

Phase II

"FAST Site Testing" of CSCs

Winter '03-04

Now

Commission Crew

~Installation Crew

Phase III

Peripheral Crates DAQ

Summer '04

DAQ/DCS Crew

Phase IV

- Counting Room Crates
- Full EMU System

Spring '05 DAQ/Trigger Crew

CSC Commissioning – Phase I

Goals

- Basic mechanical and electrical confirmation that the "chuncks" of metal and plastic hanging on the YE disks are indeed likely to work as particle detectors:
 - No broken wire or gas leaks, no breakdown under limited HV (~1kV)
 - Piping cross-checks (Water/Gas), Cable Connectivity/Dead Channels checks.

Planning/Status

First draft plan circulated. Activities being defined and starting in SX5

Needs

 Access to disk (coordinate through the CSC Installation Group) + Portable DAQ & Power Supplies.

Who

- US EMU Group (Purdue U., FNAL, UC Davis, UCLA, PNPI, IHEP)
 - Complementary to Installation Effort (i.e. no double counting of resources).

ME1/1

No need for common planning at this stage

CSC Commissioning – Phase I

G Apollinari, O Prokofiev FNAL, July 7, 2003

Proposal

EndCap Muon System

Maintenance and Operation

Chamber Tests in SX5

1. Introduction

2. Tooling

Status (more specific)

- No broken wires on all YE+2 installed CSCs (36 chambers)
- Checked all gas pipelines in YE+2
 - Found & Corrected 4 labeling mistakes, Hardware OK
- Checked leak rate for 4 CSCs
 - All within specs

Plans (immediate future)

- Complete previous tests on all YE-2 & YE+2 CSCs by end of October (72 ME/2+18 ME2/1)
- Start Cable/Connectivity & Dead Channel Cross-checks on "cabled" CSCs with portable DAQ system.
 - Provide quick feed-back to Installation crew.

CSC Commissioning – Phase II

Goals

- Extended FEE Checking, Timing and Debugging. Extended HV testing of CSCs. Achieve 100% working channels (FEE+HV sectors)
 - Longish (~few hours to a day) test of CSCs at working voltage (3.6 kV)
 - Extended test of FEE using procedures developed at FAST sites (see next slide).

Planning/Status

- Plan being developed. Subset of FAST site tests will be used in order to commission ~2-3 CSCs/day. Expected ~60-90 days per endcap (3-5 months).
- Portable Standalone DAQ system being commissioned to deal with different cable lengths (UF).

Needs & Human Resources

- Access to disk (coordinated through the CSC Installation Group) + Working gas mixture delivered to disks. Portable DAQ & Power Supplies. No water.
- US-EMU (UF, Purdue, UCLA, UC Davis, PNPI (ME23/1), IHEP (ME23/1)).

ME1/1

DAQ development will include the ME1/1 cable lengths.

CSC Commissioning – Phase II

- Considerations for "FAST site" testing of CSCs on disks
 - Implemented for Phase I @SX5
 - Planned for Phase II @ SX5. Still ~unsatisfactory timing.

I →	Broken wires		
2→	Cable connectivity/Dead Channels		
3>	Gas leak		
			Timing
\rightarrow	Initialization, Slow Control Test (ALCT, LVMB, CFEB)		25 min
)	Qualitative test (event display)		
\rightarrow	AFEB counting rate, after-pulsing, interconnections (3600 and 3800 V)		20 min
$2\rightarrow$	AFEB connectivity, cabling check, cross-talks		3 min
\rightarrow	AFEB threshold calibration, analog noise		20 min
1	AFEB-ALCT time delay calibration		
\rightarrow	CFEB noise/pedestals, SCA pedestal uniformity, readout-correlated cross-talks		10 min
\rightarrow	CFEB connectivity, cabling check		3 min
7	CFEB pulse timing, shape quality, near-strip and long-range cross-talks, gain calibration		
\rightarrow	CFEB comparator counting rate (3600 and 3800 V)		20 min
\rightarrow	CFEB comparator threshold calibration, analog noise		35 min
)	CFEB comparator timing		
	CFEB comparator logic check		
3>	CFEB comparator offsets and analog noise: (n+1)-(n) and (n+1)-(n-1)		110 min
	•••	Total	246 min ⊗

CSC Commissioning – Phase II

Expectations for "FAST site" testing of CSC+FEE in SX5

- CSCs + FEEs processed by Production FAST sites should be "problem-free" at ISR.
- Unfortunately this is not the case even though the "problem rate" is considerably reduced (see picture)
- Several of the ISR problems appears to be due just do mishandling (but they are "problems" nevertheless)

It is reasonable to expect a non-zero failure rate for CSC+FEE installed in SX5.

FEE Failure rates experience:

- UF/UCLA ~3.4% of boards
 - PNPI/IHEP ~2.0% of boards
- ISR ~1-1.5% of board
- SX5

CSC Commissioning – Phase III

Goals

- Readout multiple chambers on one disk through one peripheral crate.
- Commission HV, LV and respective Slow Controls (see Clare's talk).

Planning/Status

- No full plan yet, but a lot of software development work going on, XDAQ-based DAQ being developed at UF and at the CERN 25 nsec test beam (Sep '03).
- Peripheral Crate Commissioning will naturally evolve into the "Slice Test"
 - Commissioning will be performed on 100% of the system
 - *Slice Test* will exercise a ϕ sector of 20° in the EMU system.

Needs & Human Resources

- Availability of Peripheral Crates & Electronics (delivered in ~Summer '04)
- Access to disk (coordinated through the CSC Installation Group) + Working gamixture delivered to disks. HV and LV delivered to EMU-CSC.
- US-EMU (Rice, UF as software developers usual suspects at CERN).

ME1/1

• Software and Hardware provided to - manpower provided by - the ME1/1 grou

CSC Commissioning – Phase III Crates Nomenclature

Peripheral Crates

LVDB ALCT

CSC

CSC Commissioning – Phase III Data Flow

CSC Commissioning – Phase III Present Thinking (under evolution)

Slice Test "Detour"

- Start with a 20⁰ sector of ME2/2 Chambers
- 2 ME234/2 CSCs mounted on YE+2
 - 1 CSC belongs to the "lower layer" CSCs.
 - The second CSC can be temporarily installed, if necessary, even if the ME2/1 chambers are not installed yet.
- Temporary "Peripheral crates" can be installed if necessary. Peripheral Electronics (DMBs, TMBs) from production.
- FED Crate sitting at the foot of the disk

Full Commissioning

- Will use subset of the "Slice Test" measurements.
- Performed on 100% of the system after production crates and boards are installed.

Achieved with preproduction hardware in UF (Aug. '03)

 FED crate still "simulated" in software

CSC Commissioning – Phase IV

Goals

- Readout multiple disks disk through Peripheral crate and FED Crates (USC55).
- Phase IV corresponds to the natural definition of a Slice Test.
 - Tight connections with Trigger system.
- Phase IV to take place both in SX5 and UX5.

Planning/Status

 No plan yet. FED Crates hardware becoming available in prototypes, but hardware not yet systematically used in CSC readout.

ME1/1

 Full integration of the EMU system at this stage.

Commissioning Manpower

How much manpower (physicists excluded) is needed?

- Use CDF Commissioning experience
- Largest needs during the Commissioning phase:
 - Electrical/Electronics Engineers & Software Engineers.

- Example of consideration for CMS-EMU Electronics.
 - CDF used 2.5 FTE-y of El.Eng. for the Commissioning of ~400 complex VME Boards
 - US-EMU system will have to commission ~3000 complex VME boards and there is funding available for 11 FTE-y of El.Eng. (~70% of CDF experience, comparable but on the low side).
- Similar considerations apply to funding for Software Engineers.

Commissioning Milestones/Activitie

Slice Test in SX5

YE+ Operations in SX5

YE- Operation in SX5

Re-Commissioning in UX5

Oct 1st, 2004

March 1st, 2005

Sep. 1st, 2005

Oct 1st, 2005 to Apr. 30th, 2006

Conclusion

- Lacking unlimited financial and/or manpower resources, it takes ~2-3 years for a detector system to go from the "Installation" phase to a "Ready for Physics Data Taking" phase (CDF-D0 experience).
- EMU in good shape.
 - Installation taking place.
 - Phase I Commissioning steps being undertaken.
 - Procedures and tools for Phase II inherited from FAST sites and almost ready to be used in SX5.
 - Phase III (Slice Test) software tools being developed. Hardware delivery on schedule for Slice Test goal date (Fall '05).
 - Next hurdle: start Chamber+Electronic read-out in SX5 and share the Hall with the rest of the CMS assembly work.